High-Performance Optical Modulators Based on Stepped Quantum Wells

نویسندگان

  • H. Mohseni
  • Manijeh Razeghi
  • Gail J. Brown
چکیده

High-speed and high-performance optical phase and amplitude modulators are critical components of many photonic systems. Semiconductor-based modulators are very attractive, since they can be monolithically integrated with other semiconductor devices. Unfortunately, the commonly used modulators based on square quantum wells have inherent properties that limit their modulation performance. We present a new class of quantum wells called “stepped quantum wells” (SQW) with extra degrees of freedom that can be used to design high performance optical modulators. We demonstrated SQW phase modulators with nearly one order of magnitude higher efficiency than their counterparts. Also, linearized modulators based on SQW with more than two orders of magnitude higher linearity than the existing semiconductor modulators are presented. Finally, high-performance surface-normal modulators based on SQWs with nearly two times better efficiency and 7 dB higher extinction ratio compared with the conventional devices with rectangular and coupled-quantum well active layers are demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Performance Phase and Amplitude Modulators Based on GaInAsP Stepped Quantum Wells

Enhanced electrooptic coefficient of GaInAsP three-step quantum wells (3SQW) for high power electrorefraction modulator applications is reported. Measured electrooptic coefficient of the 3SQW is nearly three times higher than the conventional rectangular quantum well (RQW) at λ=1.55 μm. Higher electrooptic effect, combined with a low optical absorption coefficient α<1 cm in the 3SQW increased t...

متن کامل

Giant electro-optic effect in Ge/SiGe coupled quantum wells

Silicon-based photonics is now considered as the photonic platform for the next generation of on-chip communications. However, the development of compact and low power consumption optical modulators is still challenging. Here we report a giant electro-optic effect in Ge/SiGe coupled quantum wells. This promising effect is based on an anomalous quantum-confined Stark effect due to the separate c...

متن کامل

Electricfield dependence of optical absorption properties in coupled quantum wells and their application to 1.3 m optical modulator

Related Articles Ultra-thin plasmonic optical vortex plate based on phase discontinuities Appl. Phys. Lett. 100, 013101 (2012) Modeling of multilayer electrode performance in transverse electro-optic modulators AIP Advances 1, 042163 (2011) Laser-locked, continuously tunable high resolution cavity ring-down spectrometer Rev. Sci. Instrum. 82, 103110 (2011) Carrier-induced modulation of radiatio...

متن کامل

Ultralinear heterogeneously integrated ring-assisted Mach–Zehnder interferometer modulator on silicon

A linear modulator is indispensable for radio frequency photonics or analog photonic link applications where high dynamic range is required. There is also great interest to integrate the modulator with other photonic components, to create a photonic integrated circuit for these applications, with particular focus on silicon photonics integration in order to take advantage of complementary metal...

متن کامل

Strong Optical Filed Intensity Improvement Introducing InGaAsP Quantum Wells in InP Nanocavity

This paper presents the optical characteristics of a quantum well doped InP nanocavity.The resonance wavelength of the nanocavity and the optical field intensity is calculated before and after presence of the quantum wells. The resulting huge filed intensity of about 1.2×108 respect to the incident field is the effect of quantum wells placed in vicinity of center of nanocavity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006